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Abstract. The method of approximate conditional symmetries for partial differential equations
with a small parameter is introduced. We use this method to obtain new approximate solutions
of a class of nonlinear wave and heat equations. Also, the notion of a truncated symmetry for a
perturbed equation is presented and applied.

1. Introduction

It is well known that the symmetry group method plays an important role in the analysis
of differential equations. The original symmetry method for finding symmetry reductions

of partial differential equations (PDES) is the Lie point symmetry group method [1-4]. We
generally refer to it as the classical method. It has been successfully applied to find exact
solutions and conservation laws of a wide class of PDEs. However, the classical method
has some restrictions. Firstly, there are some important nonlinear PDEs, for example the
Boussinesq equation [5] and the heat equation with a nonlinear source [6], with very poor Lie
point symmetries—they at most admit translations in time and space, and scale transformations.
Secondly, some interesting exact solutions such as the multi-soliton solutions and the separable
solutions cannot be obtained by the classical method. Sothe need to extend the classical method
arose.

To date, there have been several generalizations of the classical method for symmetry
reductions of PDEs, which include the partially invariant solution method due to Ovsiannikov
[1], the conditional symmetry method of Bluman and Cole [7] (also referred to as the
nonclassical method), the direct method of Clarkson and Kruskal [8], the differential constraint
approach of Olver and Rosenau [9] and the generalized conditional symmetry method due to
Fokas and Liu, and Zhdanov [10-12]. The conditional symmetry method is similar to the
classical method. It consists in augmenting the original PDE with invariant surface conditions,

a system of first-order differential equations. The number of determining equations for the
conditional symmetry method is generally smaller than the classical method. Although the
approaches [6, 13, 24] have been developed to solve the overdetermined system, itis in general
difficult to obtain all possible solutions.

Another vital aspect is that many nonlinear PDESs that arise in science and engineering
depend on a small parameter. So it is of great importance to find approximate solutions. The
ordinary methods for tackling such equations are the numerical and the perturbation methods.

0305-4470/00/020343+14$30.00 © 2000 IOP Publishing Ltd 343
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Recently, Baikov, Gazizov and Ibragimov [14-17], in a series of papers, developed the theory
and applications of the approximate symmetry group method to find approximate solutions,
to calculate approximate conservation laws and approximate BiekiBnd transformation
groups of nonlinear DEs.

Consider &th-order differential equation systerBJwhich is perturbed up to orderin
the small parameter, namely

Eﬁ(x, Uy ULy, - o5 U €) = Eg(x, Uy ULy, - Ugy) T +e”E§(x, U, ULy, - U))
= O(e?*Y B=1....m 1)
wherex = (L x2,....x"), u = @b u? ..., u"), Ef are smooth functions in their
argumentss asmall parametedys), u2), . . . , u ) are the collection of various order derivatives
up to orderk, namely,uy = D;(u®), ui; = DiDiu®),..., being the first and second
derivatives, respectively, up th order, and
a a a
Di:++u? + u% +... i:l,...,n
ax! oue Y du

is the operator of total differentiation with respectto

We employ the following definition of approximate symmetries of equation (1). The
interested reader may refer to [14, 15, 17] and references therein for more details.

An operatort’ = &' (x, u, €)/3x" +n*(x, u, €)/du® (Summation ori ande is implied) is
a pth-order approximate symmetry of equation (1) if

XM (EP)| gr_ogery = O(e?*h) )
where

X=Xo+teX1+---+ePX, @)

k k

2 = x+ex 4. +erxll
and

Xy =& — +nf ? b=0

b= S T T e R
P 4)

a
XM= x, 40 e
b b {b,l 8147 Cb,lllz 814;11&

in which&; andn? are functions ofx, u) and the additional coefficients are determined by

flg,iliz...g = Dy, Di, ... D (W) + ég”?iliz...i,\. s=L1....n (5)
whereW;' is called the Lie characteristic function defined by
Wi =y — &u. (6)

TheX,s are Lie point symmetry generators. In[14, 15, Xg],# Ois called astablesymmetry
and anunstablesymmetry otherwise. Thérst-order approximate infinitesimal generators
X = Xo+eX; of afirst-order perturbed equatidf = Eg +eE1’3 = O(e?) can be determined
by a three-step algorithm (see [17]).

The purpose of the present paper is to study the approximate conditional symmetries of
PDEs. In section 2, we discuss the method of approximate conditional symmetry. In sections 3
and 4, we use the method of section 2 to obtain the approximate conditional symmetries and
approximate conditional invariant solutions for nonlinear wave and heat equations. Section 5
contains a discussion of our results.
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2. Approximate conditional symmetry method

The approximate conditional symmetry approach is a natural generalization of the approximate
classical symmetry method in the same way as the conditional symmetry method is a
generalization of the classical symmetry method. Consider the perturbed equation (1). Suppose
(1) admits the approximate symmetry generatedcbyl hen the solution

p
u® = Zebu‘;(x) (7
b=0

of equation (1) is an approximate invariant solution of (1) under a one-parameter subgroup
generated by if the invariant surface conditions

)4 14
Y ewg =Y e — Eful) = O (8)
b=0 b=0

holds together with equation (1). Now let us denote Wy} fhe surface given by the following
system:

P P
Zebwg = O(eP*h Biy ... 0, [Z ebWE‘i| = O(e"*h) s=1,..., k-1 9)
b=0 b=0

whered;, = 9/0x", iy = 1,...,n. This set of surface conditions are just ttie— 1)th
prolongations of the invariant surface conditiong_, €® W = O(e”*%).

The graph of the approximate solutions defines a submanifold of the space of independent
and dependent variables. The solution will be invariant under an approximate one-parameter
group generated byt in the pth order of precision if the submanifold is an invariant
submanifold of this group in theth order of precision. This solution is obtained by
solving the invariance surface conditions (8) together with equation (1). For equations (1)
and (9) to be compatible, theth prolongationX!®! of the generator must be a tangent to
the intersection of the manifoldE]] and the surfaceW] in the pth order of precision, i.e.
XVEP) winie = O(eP*™).

Definition 1. The operatorY’ is said to be an approximate conditional symmetry generator,
of order p, of equation (1) if

XV EP) twinie) = O(eP™). (10)

Equation (10) is a natural extension of (2). The significant difference istHstz?) |
in (10) contains the/-terms,j =0, ..., p, Whereaon(E’os)|E§:o in the usual method does

not depend or. From equation (10), we obtain a nonlinear overdetermined systef éod
n5. Sothe approximate conditional symmetries generally does not form an approximate vector
space, i.e. the Lie bracket of any two approximate conditional symmetries is in general not an
approximate conditional symmetry. Another important feature is th&tig an approximate
conditional symmetry operator, for any arbitrary functign, u, €), X' is also an approximate
conditional symmetry operator. In fact, as for the nonclassical method, we have tha if
an approximate conditional symmetry, then saAs$ giving rise to the same invariant surface
conditions (8). This property allows us to normalize one of the nonvanishing coefficients in
the operator by taking it to be one.

We have, similar to the case of the approximate classical symmetry, the following result.
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Theorem 1. Supposet is an approximate conditional symmetry of equation (1), tkigiis a
conditional symmetry of the unperturbed equation (1), nameE/gofz 0.

Such an exact conditional symmet&y is called astable conditional symmetry of the
unperturbed equation (7).

Definition 2. Suppose thatt = fy(x) is a conditional invariant solution of a conditional
symmetry Xo of the unperturbed equatiorEg = 0 and thatu = fo(x,¢) is an
approximate conditional invariant solution of the approximate conditional symnaetryf
limc_o f(x,€) = fo(x),thenu = fy(x) is called a stable solution of the unperturbed equation
Eg = 0. Otherwise: = fy(x) is said to be an unstable solution.

For the perturbed equation (1), it is also of great importance to obtain the exact solutions.
We expand the infinitesimalg (x, u, €) andn®(x, u, €) aboute into series as

£ =) & (x,u)e

11

o

Mz L2

n (x, u)e'.

=
Il

T

o

Definition 3. If there exists a positive integéf such that fod > N in (11),
g§=n'=0
then the exact symmetry

ia aa
N T

of a given perturbed equation (1), is called atth-order truncated conditional symmetry.

3. Nonlinear wave equation

We shall consider th¢l + 1)-dimensional case in our applications; that is, one dependent
variablex and the independent variableand x. Also we takep = 1 andX to be the
generator of a point symmetry in the form

a a
X = (TO(I, X, u) +€Tl(t’xa u))g + (So(tvxv M) +6§1(t7x9 u))a

0
+(¢0(t’ X, M) + 6¢1(t’ X, Lt))% (12)
We can split the operatct into two cases:

(a) X with 7o = 0 and we choosey = 1,73 = 0.
(b) X with o = 0 and we seleciy = 1 andé; = 0.
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In this section, we discuss approximate conditional symmetries and approximate conditional
invariant solutions of the perturbed nonlinear wave equation

Uy t €U, = (uux)x (13)

which arises from one-dimensional gas dynamics [18] and longitudinal wave propagation
on a moving threadline [19]. The classical and conditional symmetries of the unperturbed
equation of equation (13) were, respectively, discussed in [18, 20]. The approximate classical
symmetries of equation (13) was discussed by Baikbal [15,17]. Following section 2,

we look for the approximate conditional symmetries of the form (12). We distinguish two
cases:

Case 1.1’0 ;ﬁ 0, 0 = 1, 71 =0.
From (10), the system of determining equations&iQip; is
[P1:6 + 20010 + P§bru — 28ud0c — 205n.b0. + Por — b1 — uPrx + 2h1don

+(u — E2) (2600 — o + 2uko)) (b + prdbou — Eodie + dodu, + do)]

X (u — 55)2
+(u — £2) (280k1 + 2600t + 2uére — ¢1)(Por + dodou — Eodor)
+(@or + podbou — Eobor) (465Er0r + 20160 + dubofror) = 0 (149)

(28061 — 280101 — 26000P1u — E1rr — 200810 — 281,P0u + 2b0xEn

—2E1,0d0u + 2P01uE0 + 2b0E1P0r — PGELw — Eodou — Eor — Eoudbo

~ 21+ uErer — 21 — 26190 + Eodow — 2] (u — 83)°

+[ (26050 — o + 2uéoy) (o1 + Erbox — 261004 — 260P1 — E1 — PoEru — o)

— (28081, + 250¢0b1u — P1 + 2ué1) (2¢ouéo + Eor + Sobor)

+(2uéy, — 268E1,) (Por + dodou — Eodor) | (1 — &5)

—(280pou + Eor + Eofior) (468E0Er + 2808100 + dubofiorér) = 0 (14b)
[§1uu + 1 + 26081 + 201 + 2E0u¢0E 1 + 26081400 — 206 1u0x

42600081 + Eobou — Ut + 2Ere — 2P + 261 + 2boién, ] (u — £9)°

+[ 2801, (260E0r — Po + 2uéor) — (oo + Eor + Eofor) (QuEr, — 26561,)

— 2608, — 2Eodokr, + ¢1 — 2ubr, | (u — &F)

— 888180 — 2b0E1¢p0 — duboboEr = 0 (14c)

(1 — &§)&wu — (2%0f0u + DEL, =0 (14d)

where&y andgg satisfy the overdetermined system (13) given in [20]. From system (14) and
[20], we notice that the approximate conditional symmetries are inherited from the conditional
symmetries of the unperturbed equation

Uy = (I'“'tx)x- (15)

It is in general, not possible to obtain all solutions of the overdetermined system for the
conditional symmetries of equation (15). Some special solutions are obtained in [20]. We list
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Table 1. Conditional symmetries of equation (15) fay = 1 (see [20]).

d d d
Vii= — +Ju— +c1—
1= ﬁax c1-

du
3 3 3
Vio= — — Ju— +
2= 50— Vugs

c1—
u

a d 9
Viz= —tcit — +2€%t—

at ax ou
0 0 " ’ 3
Via= — +a(t)u— a’"+aa" —a>=0
’ at ou
V15:£—£i 2t2u—6xzi
’ at 12 9x 13 ou
Vie = % +xt_1% + 1_3(x2 — tzu)%
Viz= 3 +t_1ui
’ ot ou

a 1 a )
=t—+-(5— — +3- —
Vig=1g + 56— VIr— + (- VI
a 1 d a
Vig=t—+-(5+v13)x— +(3++/1)u—

' a2 ox ou

the corresponding results in table 1, where only the conditional symmeiriemndV 4 lead to
nontrivial invariant solutions. The first twi, 1 andV; » give the simple solution = c11f +c12,
wherecys, ¢12 are constants. The other conditional symmetries lead to conditional invariant
solutions which coincide with the second case.

We show by means of one exampes; how one can obtain the approximate conditional
symmetries and the associated approximate conditional invariant solutions.

For the conditional symmetry; 3,

£ = cat Po = 2c2t ¢, = constant (16)

Substituting (16) into the system (14) and solving themgfaaind¢,, we have

1
= —zx+bnt+b
&1 52 211 i 212 17)
¢1 = —EC1X" — cit” + 4c1b1qt + 2c1b12
whereb;;, i, j = 1, 2 are constants.
By solving the characteristic equations
dr d d
ar X u (18)

1 e+ 6(—%)( + byt + b12) - ZCEI + 6(—§clx — 212 + deybyyt + 201b12)
we obtain an approximate conditional invariant solution in the first order of precision, namely
u=cit’+ fo)+ e[—%cltx — %c%ts + 2¢1b11t% + 2c1byot + g(k)] (29)
wherea is
A =esly — Teat® — €(3b1at? + biot + £t
and f (1) andg (1) satisfy the system of ODEs
(ff)i =22 —c1fi

(20)
fer* frg tc1g = 4cibuah — b f +boy.
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Forby1 = 0 andby; = 2c§, system (20) admits the explicit exact solution
22/3;2 (413 +ad + af/z, /83 + a3 )1/3
+
(03 +ad+ af/Z /833 + 3)1/3 22/3

g = —1+2( 3 +ad + a7 @\3 +ad) Y243

f)=—-r+

x [252a3 + 221333 + 221342833 + af) Y2 (433 — 2a1n® — Lt
+12°23(43 + a3 + a¥2 (813 + 0 V2] PP
x[1222 + a?(8)3 + ad) " V2(1202 + 2a1). + a?)]

whereq; is a constant. This solution cannot be obtained by the approximate classical method.
For the conditional symmetry; 4, we find two types of solutions.

(1)
=0 $o=u/t £ = dut” +diot ™2 ¢1 = (doat® +daot > — J)u
2 1 4 1.2 1/2 (21)
u=t(for+ f)Y%+eftg(h) + (3daar* — 31% — da2) (for + f1)/?]
where
A=x— (%dllts — dlzt_l)é
16d. 8d _
g= Ff?(fo)\ + f)? - ﬁ(fox + f1) + (goh + g0 (for + f) V2.
In the above and hereaftgrandg;, b;;, ¢;; andd;;, i, j = 0, 1, 2 are constants.
2)
=0 o= —2u/t &1 = (dut® +digt™Hx +dant* + dgpt ™t
¢1 = (dart® + 2d1at* + 2d1ot ™ +dapt 7> — L)u (22)
u=12f0) +e[t72g(\) + (2dat® + Edoat® — dapt 3 + 21t % Int — 7Y F (V)]
where
A=x— 6[(%61111‘5 +dyoln t)x + %d41l5 +dsoln l]
and (1) andg (1) satisfy
+f2=6
fhat+ f5 S (23)

8hu T 218 + fgn = (Bdioh +dsp) fo. + 6g — 10d1o f.

It is difficult to determine the general solution of system (23). Howeverdfpr= ds, = 0,
we can obtain the general solution of system (23) given by
F®) ds

— =+
452 + fos—2 h

Y A
g(A)_go/ md5+glf»
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Case2.10=0,§ =1, =0.

In this case, the determining equationsfpand¢; are

b1 — Apod1dbou — 3Podr. + Tadodor + 2upotidor — 3Pord1 — 205h1 + dor
—2ty, (udpor + ugpodo, + $5) — 2urporu — ubrex — 2udoPir

+2ut1, ¢ = 0 (249)
4ri¢podou — 20§71 + PoTic + 2T1dhox + 21 — Tur — 2uTruPox + 2uT1d0w

+2u oo T1 + 2P0, Tox + UT1x + 2UP0T1ry + UPST1y = O (240)
G1uu — 211, =0 (24c)
Tow =0 (24d)

wheregg is determined by equations (15) and (16) in [20]. For this case, we obtain some
approximate conditional symmetries and approximate conditional invariant solutions as listed
below.

3)
7n=0 @0 = boit + b2
¢1 = (crax + c1pu — Jcra(baat +bao)x” +da(t)x +da(1)
u = (baat +bao)x +h(t) + €[ ((bast +boox) + h(1))(Fc11x” + c10%) (29)
—c11(bart + ba)x® + 3(d1(t) — c12bzz — c12boat)x? + da(t)x +m(1)]
where
di(t) = —i—g‘c*nb%lt“ - 133611b21b22t3 - lfgcllbgztz +dyt +dio
da(t) = — 2 cuibyt’ — Be1ibgiboot® — Beiiboibst®
+35 (3d1aboy — Pe11b3, + 2c10b5) 1
+2(3ba1d12 + 3du1bzz + Ac12b21b2o)t
+% (3dr2b22 + 2c12b5, — bzl)lz +dot +doo
h(t) = 45051 +10)* + baut + b,
m(t) = —ggc1a(t +10)'0+ by (Tday + Terz — lenban) (¢ +10)”
+380(13d12 — Llc1ibay) (1 +10)° — (1 +10)°
+35(c11b3) + 3c1oba1 + duabay + 2d) (¢ + 10)*
+1(2c11b31b32 + Bc12bap + bardio + diibap + 2d0)) ( + 1)
+2(c11b5, + diobsp — ba))t? + daat + dzz, bap = baato.
4)
71=0 G0 = 27 %x + b1t + oot 2
¢1 = (dont* +diot > — Et7Nx + 5bord1at® + (3baadis — fgban)t?
+dt® — 3bprdiot? — Thoot ™t + dogt % + Sboadint 3, (26)

u = 1"2x2+ (bpat® + boot “2)x + h(t) + e{ 3 (drat* — 217 + dyot 3)x?
1 9, (1 7 4 3 2 1, -1
+H3d11ba1t® + (3duibaz — f5ba)t* + doat® — $bordiat® — Lboot

+dpot 2 + Sboadiat lx +m(1)}
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where

1,2 .8, 1 3 2 -1,1;2 -2
h(t) = 5—4bth +§b21b22t + bogt© + bzt +4—1b22t

13 2 14, (1 172 \,9
m(t) = sisedibst™* + (35021d22d11 — 35b5))1
1 8 1.,7,1 5, (1 2 7 4
+§1(d11b24 + 2b21d1)t° — 55t F §d11b23t + (§d11b22 - E)sz-bzz)t
1 1 3 3 2 1
+(§b21d22 + Zboaday — §b24)t + bost” — 5d12baat

1,1 2,1, ;2 ,-3_ 3
+hoet ™ + 7 (d12baz + 2boador)t ™ + gdioboyt 7 — 1gbes.

(5)
711=0 ¢o=2u/x
¢1 = (crix 2+ crox ™ Du + (dyax ™2 + diox 3t + dorx 2 + dopx 2 27)
u=x2h@t)+ e[(—cllx — %clzx_4)h(t)
—(%d11x71 + %dlzxiz)l‘ - %dzpcil — %dzzxiz + m(t)xz]
whereh(t) andm(z) are given in terms of Weierstrauss elliptic functions
h(t) = o (t + 10,0, 11)
t
m(t) = daih’ + daoh’' / (W)~2dr.
(6)
11=0 $o = u/(2x)
¢1 = (c1ax? + c1ox Pu + (dax ™% + dypx)t + dorx ¥ + doox
u = x"%(caat + c32) + €[ (5e11x” — crax?) (cart + c32) (28)
+(3diox® — diax V)t — doax Y% + Sdoox?
+H( 2 (11 + dit? + 2doot® + dayt + dap)x 2.
(7)
71=0 ¢o = u/(2x)+3172%x
p1 = caox 2w+ (d1at®? + dagt TH2)x % (doat® + dgpt T — FtHx — Beat 2 (29)

U= h(t))cl/2 +17%% + 6[%(d21l4 + dzzt_s — 1—30t_1)x2

—40121‘_2)6 + m(t)xl/z — (d11t3/2 + dlzt_l/z + c10h (Z‘))x_l/z]
where
h = 6311_3/2 + 632l5/2
m = Lcaadort'? + 2ca1dp1t”? — Beapt 17 + dgpt®?

—gC?,zdzzt3/2 - %Cslfl/z +dgyt % + %C31d22l75/2~
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4. Nonlinear heat equation

Inthis section, we turn to the approximate conditional symmetries of the nonlinear heat equation
Uy = Uy, —us+eu. (30)

Equation (30) arises in several important physical applications including microwave heating
and chemical reactions [21, 22]. The conditional symmetries of the unperturbed equation of
equation (30), namely

U =ty — u® (31)

have been discussed in [6, 23] and are listed in table 2. As for the nonlinear wave equation (13),
we consider two cases.

Table 2. Conditional symmetries of equation (31) (see [6, 23]).

Number & 0 ¢o
Va1 g 2u 1 —%ua
3 3
V. S T -
2 x+ky (x +k1)?
Va3 1 0 %ﬁuz
\/E u
1% 1 0 XS24
a4 2" T Xtk
2 2x +k 242
Vas 1 0 £uz + 1+ V2
’ 2 x2+kyx — 6t x2+kyx — 6t

Caselt #0,79=1,11 =0.
The determining equations féf and¢; are

b1 — Pror — uPr, + 2u3Er, + 3uPr — o + 21,0 + 20,1 — 2o + upo, = 0 (329)

Eree — 2010 — 2E081c + 2081, + Uy, — &1 — 2180, + 2910, — ubo, =0 (32)
Zglxu - ¢luu - 2§0§1u - 2515014 =0 (32:)
§1uu =0. (32d)

The zeroth-order determining equations §grand¢g are given in [6] and the solutions are
presented in the first two entries of table 2, so we consider two cases.

)
§o = %«/Eu Po = —%us.
Solving system (32), we find
& =0 ¢1=32u
and an approximate conditional symmetry of equation (30)

3 3/2 2 3
V=V0+6V1=—+£u———(u2

3
—ean L. 33
ot 2 "ox 2 N (33)
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Actually, the approximate conditional symmetry (33) is a first-order truncated symmetry
of equation (30), namely it is an exact conditional symmetry of equation (30).
An exact solution of the unperturbed equation (31) correspondiffg i®[6, 23]

_ x +ko
SV2t + ko) + 3V2x + k2)?

(34)

wherek;, i = 1,2, are constants. Since the approximate symmetry is a truncated
symmetry, the corresponding approximate conditional invariant solution is an exact
solution of equation (30). In terms of the signegfwe obtain solutions of equation (30)
given by

(A) € > 0:
ﬁ[eﬁ(x+g@t) _ klej/gufg\/zz)]
uy = . (35)
e\/;()ﬁg 2€t) +k1€7\/;(X7g 2¢ t) +ky
(B) € <0:
V=€(kycos,/—3ex —sin,/—1ex) )

MZ = .
. 3
cos\/—iéex +kysin,/—3e x +kpe 2!

It is easy to see that solutiong andu, converge to zero uniformly asapproaches
zero—not to the solution (34) of the unperturbed equation (31), which shows that the
solution (34) is unstable.

@
3 _ 3u
TGtk T TG

In this case, we find an approximate conditional symmetry inherited from the
symmetryVy o,

B 3, (_tnu Lovin)]?
= — — — — (X —_—
Y X +k (x+k)2 2 YV ox

& =

3 2b11 1 ad
+| — + + = — 7
[u+hﬂ {u+hﬁ »}%u 5D
and the associated approximate conditional invariant solution of equation (30)
w =30 +k) f) +e (b1 — 150 + kD)%) F ) + 3 +k)g(W)] (38)

where
=1+ g+ k)? + e[ ghulx + k) — 75 (x + k)]

f=+2ds(x, 342
Py
g=011f,\/f[2d)»+621fx+gf/\/ FO)f72dA

and d (A, k) is the Jacobi elliptic function which satisfies

2
(j-i) = k?(k? — 1) + (2k? — DA% + A4
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Case2.19p=0,§0=1,& =0.
The system of determining equations fgr ¢o and¢; is
dor — u3Pou — Porx — 200P0xu + 3u’Po — P5dou. = 0 (3%)
b1 — P1er — 2000100 — P3PLL — 201P00u — 2P0P1P0uu — U D1
+uo, + 3u’p1 — do + Tacx (bor + Podou — u®)
+71, (20000 + 2PodoxPou + 20005, + uidox — ulPodo, — u®)
210 (Godor + Do, — upo) + 211 (dor + Pod, + dodou — u’pon)
— 71, (Gox + oo — 1) + Tr (P5b0. + P3d0u — u’h))
+271 (Gox Poxu + PoPoudoru — 21°Poru + Podor Pouu

+2¢§¢0u¢0uu - 2u3¢0¢0uu) =0 (3%)

The system (39) with two equations involves three dependent varighles, andzy, soitis
not possible to find all solutions. Special solutions will be considered. Set

$o = A(x, Hu?+ B(x, Hu + C(x, 1). (40)
The substitution of (40) into (39 implies thatA, B andC satisfy

242 -1=0

C—2AB,+B>) =0

B, — Byy —2BB, —4ABC =0

C, — Cyy —2CB, — 2AC? = 0.

Solutions of the system (41) are given by
1

(41)

0) A:Eﬁ B=C=0
1 1
ii A=_-+2 B = cC=0
() 2\/_ x +by
1 2x + by 22
i A==-+2 B=—" - C=_=-v=
(i) ZI x2+bix — 6t x2+byx — 6t

Solutions (ii) and (iii) were not given in [6]. Solution (i) yields the stationary solution of the
unperturbed equation (31). Unfortunately, solutions (ii) and (iii) lead to the exact solution (34)
of equation (31) again. To treat (89we restrictr; = 0 andgy = a(x, t)u?+b(x, Hu+c(x, t).

We consider two cases corresponding/ia andVa 4.

1)
=1 $o = 33/ 2u’.
Substitutingpg and¢; into (3%), we finda, b, andc satisfying
a=0 c=+2b, - 1v2 b, — by, = 0. (42)
Two special solutions are considered.

(A) b = 0. We deduce an approximate conditional symmetry

d B
Vom L v 1aut— o (43)
0x ou
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which actually is a first-order truncated symmetry [6], so tiagives exact solutions of
equation (30).

If e >0,

u = —/€ cothiv/2e (x — 2v/2et). (44)
If ¢ <0,

u = /—etaniv/—2e (x — 24/ 2¢t). (45)

Solutions (44) and (45) do not converge to the stationary solution of equation (31), so the
stationary solution is also unstable.

(B)b = %x. We find an approximate stationary solution
1

u = m + (k]_ - %\/EX)_Z(%]C%X + gkll - %2\/2?(3)6. (46)
2
)
fo=1 o= IV2l+ —
2 x+by ’
In this case, we obtain an approximate conditional symmetry
9 V2 2 u 2.1
V4— a"‘ |:7M +x+—b2+€((6bllt(x +b2) +6()C+b2)+b11)l/t
a
+2+/2b11(x + bz)l)]a—. (47)
u

For b1, = 0, the corresponding approximate conditional invariant solution is
= (x+b)(=3v2 + by — 22(x +b)?) "

+e[112(x + b2)3(—g\/§t +boy — %1\/5()6 + b2)2)71
—(x+ bz)(%\/él‘z - %bzﬂ + by — 9%\/5()6 + b2)4)
x (=332t + by1 — 2V2(x +52)?) 7). (48)

5. Discussion

In this paper, we extended the theory of the approximate classical symmetry method of Baikov
et al[14, 15] to include conditional symmetries and this enables us to construct approximate
conditional invariant solutions for nonlinear PDEs depending on a small parameter. In
particular, for the nonlinear wave equation and the nonlinear heat equation considered, we
constructed some approximate conditional invariant solutions. Just as the conditional invariant
solutions cannot in general be obtained by the classical method, so too those solutions except
for certain cases cannot be obtained by the approximate classical symmetry method. For
nonlinear partial differential equations with a small parameter, we introduced the notion of
a truncated symmetry. For the nonlinear heat equation (30), when it admits the truncated
symmetries of first order, we cannot obtain approximate exact solutions. The stability property
of exact solutions for unperturbed equations was also considered. As we have seen before,
the overdetermined system for approximate conditional symmetries are more complicated
than that for the ordinary conditional symmetries, so it will be of interest to develop computer
algebra programs to solve the overdetermined system for approximate conditional symmetries.
In particular, the algorithm of [24] could be useful for this purpose.
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