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Abstract. The method of approximate conditional symmetries for partial differential equations
with a small parameter is introduced. We use this method to obtain new approximate solutions
of a class of nonlinear wave and heat equations. Also, the notion of a truncated symmetry for a
perturbed equation is presented and applied.

1. Introduction

It is well known that the symmetry group method plays an important role in the analysis
of differential equations. The original symmetry method for finding symmetry reductions
of partial differential equations (PDEs) is the Lie point symmetry group method [1–4]. We
generally refer to it as the classical method. It has been successfully applied to find exact
solutions and conservation laws of a wide class of PDEs. However, the classical method
has some restrictions. Firstly, there are some important nonlinear PDEs, for example the
Boussinesq equation [5] and the heat equation with a nonlinear source [6], with very poor Lie
point symmetries—they at most admit translations in time and space, and scale transformations.
Secondly, some interesting exact solutions such as the multi-soliton solutions and the separable
solutions cannot be obtained by the classical method. So the need to extend the classical method
arose.

To date, there have been several generalizations of the classical method for symmetry
reductions of PDEs, which include the partially invariant solution method due to Ovsiannikov
[1], the conditional symmetry method of Bluman and Cole [7] (also referred to as the
nonclassical method), the direct method of Clarkson and Kruskal [8], the differential constraint
approach of Olver and Rosenau [9] and the generalized conditional symmetry method due to
Fokas and Liu, and Zhdanov [10–12]. The conditional symmetry method is similar to the
classical method. It consists in augmenting the original PDE with invariant surface conditions,
a system of first-order differential equations. The number of determining equations for the
conditional symmetry method is generally smaller than the classical method. Although the
approaches [6, 13, 24] have been developed to solve the overdetermined system, it is in general
difficult to obtain all possible solutions.

Another vital aspect is that many nonlinear PDEs that arise in science and engineering
depend on a small parameter. So it is of great importance to find approximate solutions. The
ordinary methods for tackling such equations are the numerical and the perturbation methods.
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Recently, Baikov, Gazizov and Ibragimov [14–17], in a series of papers, developed the theory
and applications of the approximate symmetry group method to find approximate solutions,
to calculate approximate conservation laws and approximate Lie–Bäcklund transformation
groups of nonlinear DEs.

Consider akth-order differential equation system [E] which is perturbed up to orderp in
the small parameterε, namely

Eβ(x, u, u(1), . . . , u(k); ε) = Eβ0 (x, u, u(1), . . . , u(k)) + · · · + εpEβp(x, u, u(1), . . . , u(k))
= O(εp+1) β = 1, . . . , m̃ (1)

where x = (x1, x2, . . . , xn), u = (u1, u2, . . . , um), Eβi are smooth functions in their
arguments,ε a small parameter,u(1),u(2), . . . , u(k) are the collection of various order derivatives
up to orderk, namely,uαi = Di(u

α), uαij = DjDi(u
α), . . . , being the first and second

derivatives, respectively, up tokth order, and

Di = ∂

∂xi
+ uαi

∂

∂uα
+ uαij

∂

∂uαj
+ · · · i = 1, . . . , n

is the operator of total differentiation with respect toxi .
We employ the following definition of approximate symmetries of equation (1). The

interested reader may refer to [14, 15, 17] and references therein for more details.
An operatorX = ξ i(x, u, ε)/∂xi + ηα(x, u, ε)/∂uα (summation oni andα is implied) is

apth-order approximate symmetry of equation (1) if

X [k](Eβ)|Eβ=O(εp+1) = O(εp+1) (2)

where

X = X0 + εX1 + · · · + εpXp
X [k] = X[k]

0 + εX[k]
1 + · · · + εpX[k]

p

(3)

and

Xb = ξ ib
∂

∂xi
+ ηαb

∂

∂uα
b = 0, . . . , p

X
[k]
b = Xb + ζ αb,i

∂

∂uαi
+ ζ αb,i1i2

∂

∂uαi1i2
+ · · ·

(4)

in which ξ ib andηαb are functions of(x, u) and the additional coefficients are determined by

ζ αb,i1i2...is = Di1Di2 . . . Dis (W
α
b ) + ξ jb u

α
ji1i2...is

s = 1, . . . , n (5)

whereWα
b is called the Lie characteristic function defined by

Wα
b = ηαb − ξ jb uαj . (6)

TheXbs are Lie point symmetry generators. In [14, 15, 17],X0 6= 0 is called astablesymmetry
and anunstablesymmetry otherwise. Thefirst-order approximate infinitesimal generators
X = X0 +εX1 of a first-order perturbed equationEβ = Eβ0 +εEβ1 = O(ε2) can be determined
by a three-step algorithm (see [17]).

The purpose of the present paper is to study the approximate conditional symmetries of
PDEs. In section 2, we discuss the method of approximate conditional symmetry. In sections 3
and 4, we use the method of section 2 to obtain the approximate conditional symmetries and
approximate conditional invariant solutions for nonlinear wave and heat equations. Section 5
contains a discussion of our results.
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2. Approximate conditional symmetry method

The approximate conditional symmetry approach is a natural generalization of the approximate
classical symmetry method in the same way as the conditional symmetry method is a
generalization of the classical symmetry method. Consider the perturbed equation (1). Suppose
(1) admits the approximate symmetry generated byX . Then the solution

uα =
p∑
b=0

εbuαb (x) (7)

of equation (1) is an approximate invariant solution of (1) under a one-parameter subgroup
generated byX if the invariant surface conditions

p∑
b=0

εbWα
b =

p∑
b=0

εb(ηαb − ξ ibuαi ) = O(εp+1) (8)

holds together with equation (1). Now let us denote by [W ] the surface given by the following
system:

p∑
b=0

εbWα
b = O(εp+1) ∂i1 . . . ∂is

[ p∑
b=0

εbWα
b

]
= O(εp+1) s = 1, . . . , k − 1 (9)

where∂is = ∂/∂xis , is = 1, . . . , n. This set of surface conditions are just the(k − 1)th
prolongations of the invariant surface conditions

∑p

b=0 ε
bWα

b = O(εp+1).
The graph of the approximate solutions defines a submanifold of the space of independent

and dependent variables. The solution will be invariant under an approximate one-parameter
group generated byX in the pth order of precision if the submanifold is an invariant
submanifold of this group in thepth order of precision. This solution is obtained by
solving the invariance surface conditions (8) together with equation (1). For equations (1)
and (9) to be compatible, thekth prolongationX [k] of the generator must be a tangent to
the intersection of the manifold [E] and the surface [W ] in the pth order of precision, i.e.
X [k](Eβ)|[W ]∩[E] = O(εp+1).

Definition 1. The operatorX is said to be an approximate conditional symmetry generator,
of orderp, of equation (1) if

X [k](Eβ)|[W ]∩[E] = O(εp+1). (10)

Equation (10) is a natural extension of (2). The significant difference is thatX
[k]
0 (E

β

0 )|[W ]

in (10) contains theεj -terms,j = 0, . . . , p, whereasX0(E
β

0 )|Eβ0=0 in the usual method does

not depend onε. From equation (10), we obtain a nonlinear overdetermined system forξ ib and
ηαb . So the approximate conditional symmetries generally does not form an approximate vector
space, i.e. the Lie bracket of any two approximate conditional symmetries is in general not an
approximate conditional symmetry. Another important feature is that ifX is an approximate
conditional symmetry operator, for any arbitrary functionλ(x, u, ε),λX is also an approximate
conditional symmetry operator. In fact, as for the nonclassical method, we have that ifX is
an approximate conditional symmetry, then so isλX giving rise to the same invariant surface
conditions (8). This property allows us to normalize one of the nonvanishing coefficients in
the operator by taking it to be one.

We have, similar to the case of the approximate classical symmetry, the following result.
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Theorem 1. SupposeX is an approximate conditional symmetry of equation (1), thenX0 is a
conditional symmetry of the unperturbed equation (1), namely ofE

β

0 = 0.

Such an exact conditional symmetryX0 is called astable conditional symmetry of the
unperturbed equation (7).

Definition 2. Suppose thatu = f0(x) is a conditional invariant solution of a conditional
symmetryX0 of the unperturbed equationEβ0 = 0 and that u = f0(x, ε) is an
approximate conditional invariant solution of the approximate conditional symmetryX . If
limε→0 f (x, ε) = f0(x), thenu = f0(x) is called a stable solution of the unperturbed equation
E
β

0 = 0. Otherwiseu = f0(x) is said to be an unstable solution.

For the perturbed equation (1), it is also of great importance to obtain the exact solutions.
We expand the infinitesimalsξ i(x, u, ε) andηα(x, u, ε) aboutε into series as

ξ i =
∞∑
l=0

ξ il (x, u)ε
l

ηα =
∞∑
l=0

ηαl (x, u)ε
l.

(11)

Definition 3. If there exists a positive integerN such that forl > N in (11),

ξ il = ηαl = 0

then the exact symmetry

X = ξ i ∂
∂xi

+ ηα
∂

∂uα

of a given perturbed equation (1), is called anN th-order truncated conditional symmetry.

3. Nonlinear wave equation

We shall consider the(1 + 1)-dimensional case in our applications; that is, one dependent
variableu and the independent variablest and x. Also we takep = 1 andX to be the
generator of a point symmetry in the form

X = (τ0(t, x, u) + ετ1(t, x, u))
∂

∂t
+ (ξ0(t, x, u) + εξ1(t, x, u))

∂

∂x

+(φ0(t, x, u) + εφ1(t, x, u))
∂

∂u
. (12)

We can split the operatorX into two cases:

(a) X with τ0 6= 0 and we chooseτ0 = 1, τ1 = 0.
(b) X with τ0 = 0 and we selectξ0 = 1 andξ1 = 0.
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In this section, we discuss approximate conditional symmetries and approximate conditional
invariant solutions of the perturbed nonlinear wave equation

utt + εut = (uux)x (13)

which arises from one-dimensional gas dynamics [18] and longitudinal wave propagation
on a moving threadline [19]. The classical and conditional symmetries of the unperturbed
equation of equation (13) were, respectively, discussed in [18, 20]. The approximate classical
symmetries of equation (13) was discussed by Baikovet al [15, 17]. Following section 2,
we look for the approximate conditional symmetries of the form (12). We distinguish two
cases:

Case 1.τ0 6= 0, τ0 = 1, τ1 = 0.

From (10), the system of determining equations forξ1, φ1 is[
φ1t t + 2φ0φ1tu + φ2

0φ1uu − 2ξ1tφ0x − 2φ0ξ1uφ0x + φ0t − 2ξ0tφ1x − uφ1xx + 2φ1φ0tu

+
(
u− ξ2

0

)−1
(2ξ0ξ0t − φ0 + 2uξ0x)(φ1t + φ1φ0u − ξ0φ1x + φ0φ1u + φ0)

]
×(u− ξ2

0

)2
+
(
u− ξ2

0

)
(2ξ0ξ1t + 2ξ0φ0ξ1u + 2uξ1x − φ1)(φ0t + φ0φ0u − ξ0φ0x)

+(φ0t + φ0φ0u − ξ0φ0x)
(
4ξ2

0ξ1ξ0t + 2ξ0ξ1φ0 + 4uξ0ξ1ξ0x
) = 0 (14a)[

2ξ0t ξ1x − 2ξ0φ1tu − 2ξ0φ0φ1uu − ξ1t t − 2φ0ξ1tu − 2ξ1tφ0u + 2ξ0xξ1t

−2ξ1uφ0φ0u + 2φ0ξ1uξ0x + 2ξ0ξ1uφ0x − φ2
0ξ1uu − ξ0φ0u − ξ0t − ξ0uφ0

−2uφ1xu + uξ1xx − 2φ1x − 2ξ1φ0tu + ξ0φ0u − 2ξ0tφ1u
](
u− ξ2

0

)2
+
[
(2ξ0ξ0t − φ0 + 2uξ0x)(ξ0ξ1x + ξ1ξ0x − 2ξ1φ0u − 2ξ0φ1u − ξ1t − φ0ξ1u − ξ0)

−(2ξ0ξ1t + 2ξ0φ0ξ1u − φ1 + 2uξ1x)(2φ0uξ0 + ξ0t + ξ0ξ0x)

+
(
2uξ1u − 2ξ2

0ξ1u
)
(φ0t + φ0φ0u − ξ0φ0x)

](
u− ξ2

0

)
−(2ξ0φ0u + ξ0t + ξ0ξ0x)

(
4ξ2

0ξ0t ξ1 + 2ξ0ξ1φ0 + 4uξ0ξ0xξ1
) = 0 (14b)[

ξ2
0φ1uu + φ1u + 2ξ0ξ1tu + 2ξ0uξ1t + 2ξ0uφ0ξ1u + 2ξ0ξ1uφ0u − 2ξ0ξ1uξ0x

+2ξ0φ0ξ1uu + ξ0ξ0u − uφ1uu + 2uξ1xu − 2φ1u + 2ξ1x + 2ξ0t ξ1u
](
u− ξ2

0

)2
+
[
2ξ0ξ1u(2ξ0ξ0t − φ0 + 2uξ0x)− (2ξ0φ0u + ξ0t + ξ0ξ0x)(2uξ1u − 2ξ2

0ξ1u)

−2ξ0ξ1t − 2ξ0φ0ξ1u + φ1− 2uξ1x
](
u− ξ2

0

)
−4ξ2

0ξ1ξ0t − 2ξ0ξ1φ0 − 4uξ0ξ0xξ1 = 0 (14c)(
u− ξ2

0

)
ξ1uu − (2ξ0ξ0u + 1)ξ1u = 0 (14d)

whereξ0 andφ0 satisfy the overdetermined system (13) given in [20]. From system (14) and
[20], we notice that the approximate conditional symmetries are inherited from the conditional
symmetries of the unperturbed equation

utt = (uux)x. (15)

It is in general, not possible to obtain all solutions of the overdetermined system for the
conditional symmetries of equation (15). Some special solutions are obtained in [20]. We list
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Table 1. Conditional symmetries of equation (15) forτ0 = 1 (see [20]).

V1,1 = ∂

∂t
+
√
u
∂

∂x
+ c1

∂

∂u

V1,2 = ∂

∂t
−√u ∂

∂x
+ c1

∂

∂u

V1,3 = ∂

∂t
+ c1t

∂

∂x
+ 2c2

1t
∂

∂u

V1,4 = ∂

∂t
+ a(t)u

∂

∂u
a′′ + aa′ − a3 = 0

V1,5 = ∂

∂t
− x

t2

∂

∂x
+

2t2u− 6x2

t3

∂

∂u

V1,6 = ∂

∂t
+ xt−1 ∂

∂x
+ t−3(x2 − t2u) ∂

∂u

V1,7 = ∂

∂t
+ t−1u

∂

∂u

V1,8 = t ∂
∂t

+
1

2
(5−
√

13)x
∂

∂x
+ (3−

√
13)u

∂

∂u

V1,9 = t ∂
∂t

+
1

2
(5 +
√

13)x
∂

∂x
+ (3 +

√
13)u

∂

∂u

the corresponding results in table 1, where only the conditional symmetriesV1,3 andV1,4 lead to
nontrivial invariant solutions. The first twoV1,1 andV1,2 give the simple solutionu = c11t+c12,
wherec11, c12 are constants. The other conditional symmetries lead to conditional invariant
solutions which coincide with the second case.

We show by means of one exampleV1,3 how one can obtain the approximate conditional
symmetries and the associated approximate conditional invariant solutions.

For the conditional symmetryV1,3,

ξ0 = c1t φ0 = 2c2
1t c1 = constant. (16)

Substituting (16) into the system (14) and solving them forξ1 andφ1, we have

ξ1 = − 1
5x + b11t + b12

φ1 = − 2
5c1x

2 − c2
1t

2 + 4c1b11t + 2c1b12

(17)

wherebij , i, j = 1, 2 are constants.
By solving the characteristic equations

dt

1
= dx

c1t + ε
(− 1

5x + b11t + b12
) = du

2c2
1t + ε

(− 2
5c1x − c2

1t
2 + 4c1b11t + 2c1b12

) (18)

we obtain an approximate conditional invariant solution in the first order of precision, namely

u = c1t
2 + f (λ) + ε

[− 2
5c1tx − 1

5c
2
1t

3 + 2c1b11t
2 + 2c1b12t + g(λ)

]
(19)

whereλ is

λ = e
1
5 εt x − 1

2c1t
2 − ε( 1

2b11t
2 + b12t + 1

15c1t
3
)

andf (λ) andg(λ) satisfy the system of ODEs

(ffλ)λ = 2c2
1 − c1fλ

fgλ + fλg + c1g = 4c1b11λ− b11f + b21.
(20)
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Forb11 = 0 andb21 = 2c2
1, system (20) admits the explicit exact solution

f (λ) = −λ +
22/3λ2

(λ3 + a3
1 + a3/2

1

√
8λ3 + a3)1/3

+

(
4λ3 + a3

1 + a3/2
1

√
8λ3 + a3

1

)1/3
22/3

g(λ) = −1 +λ(λ3 + a3
1 + a3/2

1 (8λ3 + a3
1)

1/2)−4/3

×[25/2a3
1 + 22/3λ3 + 22/3a

3/2
1 (8λ3 + a3

1)
−1/2(4λ3− 2

3a1λ
2 − 1

3a
2
1λ)
]

+1
32−2/3

[
4λ3 + a3

1 + a3/2
1 (8λ3 + a3

1)
1/2
]−2/3

×[12λ2 + a3/2
1 (8λ3 + a3

1)
−1/2(12λ2 + 2a1λ + a2

1)
]

wherea1 is a constant. This solution cannot be obtained by the approximate classical method.
For the conditional symmetryV1,4, we find two types of solutions.

(1)

ξ0 = 0 φ0 = u/t ξ1 = d11t
2 + d12t

−2 φ1 =
(
d21t

2 + d22t
−2 − 1

2

)
u

u = t (f0λ + f1)
1/2 + ε

[
tg(λ) +

(
1
3d21t

4 − 1
2 t

2 − d22
)
(f0λ + f1)

1/2
] (21)

where

λ = x − ( 1
3d11t

3− d12t
−1
)
ε

g = 16d21

15f 2
0

(f0λ + f1)
2 − 8d11

3f0
(f0λ + f1) + (g0λ + g1)(f0λ + f1)

−1/2.

In the above and hereafterfi andgi , bij , cij anddij , i, j = 0, 1, 2 are constants.
(2)

ξ0 = 0 φ0 = −2u/t ξ1 = (d11t
4 + d12t

−1)x + d41t
4 + d42t

−1

φ1 =
(
d31t

5 + 2d11t
4 + 2d12t

−1 + d32t
−2 − 1

5

)
u

u = t−2f (λ) + ε
[
t−2g(λ) +

(
1
6d31t

4 + 2
5d11t

3− d32t
−3 + 2d12t

−2 ln t − 1
5t
−1
)
f (λ)

] (22)

where

λ = x − ε[( 1
5d11t

5 + d12 ln t
)
x + 1

5d41t
5 + d42 ln t

]
andf (λ) andg(λ) satisfy

ffλλ + f 2
λ = 6f

gfλλ + 2fλgλ + fgλλ = (5d12λ + d42)fλ + 6g − 10d12f.
(23)

It is difficult to determine the general solution of system (23). However, ford12 = d42 = 0,
we can obtain the general solution of system (23) given by∫ f (λ) ds√

4s2 + f0s−2
= λ + f1

g(λ) = g0

∫ λ f 4(s)

4f 3(s) + f0
ds + g1fλ.
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Case 2.τ0 = 0, ξ0 = 1, ξ1 = 0.

In this case, the determining equations forτ1 andφ1 are

φ1t t − 4φ0φ1φ0u − 3φ0φ1x + τ1φ0φ0t + 2uφ0τ1uφ0t − 3φ0xφ1− 2φ2
0φ1u + φ0t

−2τ1t
(
uφ0x + uφ0φ0u + φ2

0

)− 2uφ1φ0xu − uφ1xx − 2uφ0φ1xu

+2uτ1xφ0t = 0 (24a)

4τ1φ0φ0u − 2φ2
0τ1u + φ0τ1x + 2τ1φ0x + 2φ1tu − τ1t t − 2uτ1uφ0x + 2uτ1φ0xu

+2uφ0φ0uuτ1 + 2uφ0uτ1x + uτ1xx + 2uφ0τ1xu + uφ2
0τ1uu = 0 (24b)

φ1uu − 2τ1tu = 0 (24c)

τ1uu = 0 (24d)

whereφ0 is determined by equations (15) and (16) in [20]. For this case, we obtain some
approximate conditional symmetries and approximate conditional invariant solutions as listed
below.

(3)

τ1 = 0 φ0 = b21t + b22

φ1 = (c11x + c12)u− 5
2c11(b21t + b22)x

2 + d1(t)x + d2(t)

u = (b21t + b22)x + h(t) + ε[((b21t + b22x) + h(t))( 1
2c11x

2 + c12x)

−c11(b21t + b22)x
3 + 1

2(d1(t)− c12b22− c12b21t)x
2 + d2(t)x +m(t)]

(25)

where

d1(t) = − 13
12c11b

2
21t

4 − 13
3 c11b21b22t

3− 13
2 c11b

2
22t

2 + d11t + d12

d2(t) = − 13
168c11b

3
21t

7− 13
24c11b

2
21b22t

6− 13
8 c11b21b

2
22t

5

+ 1
12

(
3d11b21− 39

2 c11b
3
22 + 2c12b

2
21

)
t4

+1
6(3b21d12 + 3d11b22 + 4c12b21b22)t

3

+1
2

(
3d12b22 + 2c12b

2
22− b21

)
t2 + d21t + d22

h(t) = 1
12b

2
21(t + t0)

4 + b31t + b32

m(t) = − 1
378c11(t + t0)

10 + 1
504(7d11 + 7c12− 11c11b31)(t + t0)

7

+ 1
360(13d12− 11c11b32)(t + t0)

6− 1
15(t + t0)

5

+ 1
12(c11b

2
31 + 3c12b31 + d11b31 + 2d21)(t + t0)

4

+1
6(2c11b31b32 + 3c12b32 + b31d12 + d11b32 + 2d22)(t + t0)

3

+1
2(c11b

2
32 + d12b32− b31)t

2 + d31t + d32, b22 = b21t0.

(4)

τ1 = 0 φ0 = 2t−2x + b21t
3 + b22t

−2

φ1 = (d11t
4 + d12t

−3− 2
5t
−1)x + 1

22b21d11t
9 + ( 1

2b22d11− 7
10b21)t

4

+d21t
3− 3

4b21d12t
2 − 1

5b22t
−1 + d22t

−2 + 1
2b22d12t

−3,

u = t−2x2 + (b21t
3 + b22t

−2)x + h(t) + ε
{

1
2(d11t

4 − 2
5t
−1 + d12t

−3)x2

+[ 1
22d11b21t

9 + ( 1
2d11b22− 7

10b21)t
4 + d21t

3− 3
4b21d12t

2 − 1
5b22t

−1

+d22t
−2 + 1

2b22d12t
−3]x +m(t)

}
(26)
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where

h(t) = 1
54b

2
21t

8 + 1
2b21b22t

3 + b24t
2 + b23t

−1 + 1
4b

2
22t
−2

m(t) = 13
21 384d11b

2
21t

14 +
(

1
44b21d22d11− 1

45b
2
21

)
t9

+ 1
54(d11b24 + 2b21d21)t

8− 1
27t

7 + 1
8d11b23t

5 +
(

1
8d11b

2
22− 7

20b21b22
)
t4

+
(

1
2b21d22 + 1

2b22d21− 3
5b24

)
t3 + b25t

2 − 1
2d12b24t

+b26t
−1 + 1

4(d12b23 + 2b22d22)t
−2 + 1

8d12b
2
22t
−3− 3

10b23.

(5)

τ1 = 0 φ0 = 2u/x

φ1 = (c11x
−2 + c12x

−7)u + (d11x
−2 + d12x

−3)t + d21x
−2 + d22x

−3

u = x2h(t) + ε
[
(−c11x − 1

6c12x
−4)h(t)

−( 1
3d11x

−1 + 1
4d12x

−2)t − 1
3d21x

−1− 1
4d22x

−2 +m(t)x2
] (27)

whereh(t) andm(t) are given in terms of Weierstrauss elliptic functions

h(t) = ℘(t + t0, 0, t1)

m(t) = d31h
′ + d32h

′
∫ t

(h′)−2 dt.

(6)

τ1 = 0 φ0 = u/(2x)
φ1 = (c11x

1/2 + c12x
−2)u + (d11x

−3/2 + d12x)t + d21x
−3/2 + d22x

u = x1/2(c31t + c32) + ε
[
( 2

3c11x
2 − c12x

−1/2)(c31t + c32)

+( 2
3d12x

2 − d11x
−1/2)t − d21x

−1/2 + 2
3d22x

2

+( 5
16(c11 + d12)t

4 + 5
8d22t

3 + d31t + d32)x
1/2
]
.

(28)

(7)

τ1 = 0 φ0 = u/(2x) + 3
2 t
−2x

φ1 = c12x
−2u + (d11t

3/2 + d12t
−1/2)x−3/2 + (d21t

4 + d22t
−3− 3

10t
−1)x − 3c12t

−2

u = h(t)x1/2 + t−2x2 + ε
[

2
3

(
d21t

4 + d22t
−3− 3

10t
−1
)
x2

−4c12t
−2x +m(t)x1/2 − (d11t

3/2 + d12t
−1/2 + c12h(t)

)
x−1/2

] (29)

where

h = c31t
−3/2 + c32t

5/2

m = 1
24c32d21t

17/2 + 5
24c31d21t

9/2 − 13
20c32t

7/2 + d32t
5/2

− 5
6c32d22t

3/2 − 1
4c31t

−1/2 + d31t
−3/2 + 1

2c31d22t
−5/2.
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4. Nonlinear heat equation

In this section, we turn to the approximate conditional symmetries of the nonlinear heat equation

ut = uxx − u3 + εu. (30)

Equation (30) arises in several important physical applications including microwave heating
and chemical reactions [21, 22]. The conditional symmetries of the unperturbed equation of
equation (30), namely

ut = uxx − u3 (31)

have been discussed in [6, 23] and are listed in table 2. As for the nonlinear wave equation (13),
we consider two cases.

Table 2. Conditional symmetries of equation (31) (see [6, 23]).

Number ξ0 τ0 φ0

V4,1
3
2

√
2u 1 − 3

2u
3

V4,2 − 3

x + k1
1 − 3

(x + k1)2

V4,3 1 0 1
2

√
2u2

V4,4 1 0

√
2

2
u2 +

u

x + k1

V4,5 1 0

√
2

2
u2 +

2x + k1

x2 + k1x − 6t
u +

2
√

2

x2 + k1x − 6t

Case 1.τ 6= 0, τ0 = 1, τ1 = 0.

The determining equations forξ1 andφ1 are

φ1t − φ1xx − u3φ1u + 2u3ξ1x + 3u2φ1− φ0 + 2ξ1xφ0 + 2ξ0xφ1− 2uξ0x + uφ0u = 0 (32a)

ξ1xx − 2φ1xu − 2ξ0ξ1x + 2φ0ξ1u + 3u3ξ1u − ξ1t − 2ξ1ξ0x + 2φ1ξ0u − 3uξ0u = 0 (32b)

2ξ1xu − φ1uu − 2ξ0ξ1u − 2ξ1ξ0u = 0 (32c)

ξ1uu = 0. (32d)

The zeroth-order determining equations forξ0 andφ0 are given in [6] and the solutions are
presented in the first two entries of table 2, so we consider two cases.

(1)

ξ0 = 3
2

√
2u φ0 = − 3

2u
3.

Solving system (32), we find

ξ1 = 0 φ1 = 3
2u

and an approximate conditional symmetry of equation (30)

V = V0 + εV1 = ∂

∂t
+

3
√

2

2
u
∂

∂x
− 3

2
(u2 − εu) ∂

∂u
. (33)
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Actually, the approximate conditional symmetry (33) is a first-order truncated symmetry
of equation (30), namely it is an exact conditional symmetry of equation (30).
An exact solution of the unperturbed equation (31) corresponding toV0 is [6, 23]

u = x + k2

3
2

√
2(t + k1) + 1

4

√
2(x + k2)2

(34)

where ki , i = 1, 2, are constants. Since the approximate symmetry is a truncated
symmetry, the corresponding approximate conditional invariant solution is an exact
solution of equation (30). In terms of the sign ofε, we obtain solutions of equation (30)
given by

(A) ε > 0:

u1 =
√
ε
[
e
√

1
2 ε(x+ 3

2

√
2ε t) − k1e−

√
1
2 ε (x− 3

2

√
2ε t)
]

e
√

1
2 ε

(
x+ 3

2

√
2ε t
)

+ k1e−
√

1
2 ε

(
x− 3

2

√
2ε t
)

+ k2

. (35)

(B) ε < 0:

u2 =
√−ε(k1 cos

√
− 1

2ε x − sin
√
− 1

2εx
)

cos
√
− 1

2ε x + k1 sin
√
− 1

2ε x + k2e−
3
2 t

. (36)

It is easy to see that solutionsu1 andu2 converge to zero uniformly asε approaches
zero—not to the solution (34) of the unperturbed equation (31), which shows that the
solution (34) is unstable.

(2)

ξ0 = − 3

(x + k1)
φ0 = − 3u

(x + k1)2
.

In this case, we find an approximate conditional symmetry inherited from the
symmetryV4,2,

V2 = ∂

∂t
+

[
− 3

x + k1
+ ε

(
b11

(x + k1)2
− 1

2
(x + k1)

)]
∂

∂x

+

[
− 3

(x + k1)2
+ ε

(
2b11

(x + k1)3
+

1

2

)]
u
∂

∂u
(37)

and the associated approximate conditional invariant solution of equation (30)

u = 1
3(x + k1)f (λ) + ε

[(
1
9b11− 1

18(x + k1)
3
)
f (λ) + 1

3(x + k1)g(λ)
]

(38)

where

λ = t + 1
6(x + k1)

2 + ε
[

1
9b11(x + k1)− 1

72(x + k1)
4
]

f =
√

2 ds(λ, 1
2

√
2)

g = c11fλ

∫
f −2
λ dλ + c21fλ + 9

2fλ

∫ λ

f (λ)f −2
λ dλ

and ds(λ, k) is the Jacobi elliptic function which satisfies(
dη

dλ

)2

= k2(k2 − 1) + (2k2 − 1)λ2 + λ4.
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Case 2.τ0 = 0, ξ0 = 1, ξ1 = 0.

The system of determining equations forτ1, φ0 andφ1 is

φ0t − u3φ0u − φ0xx − 2φ0φ0xu + 3u2φ0 − φ2
0φ0uu = 0 (39a)

φ1t − φ1xx − 2φ0φ1xu − φ2
0φ1uu − 2φ1φ0xu − 2φ0φ1φ0uu − u3φ1u

+uφ0u + 3u2φ1− φ0 + τ1xx
(
φ0x + φ0φ0u − u3

)
+τ1u

(
2φ0φ0t + 2φ0φ0xφ0u + 2φ0φ

2
0u + u3φ0x − u3φ0φ0u − u3

)
+2τ1xu

(
φ0φ0x + φ2

0φ0u − u3φ0
)

+ 2τ1x
(
φ0t + φ0φ

2
0u + φ0xφ0u − u3φ0u

)
−τ1t

(
φ0x + φ0φ0u − u3

)
+ τ1uu

(
φ2

0φ0x + φ3
0φ0u − u3φ2

0

)
+2τ1

(
φ0xφ0xu + φ0φ0uφ0xu − 2u3φ0xu + φ0φ0xφ0uu

+2φ2
0φ0uφ0uu − 2u3φ0φ0uu

) = 0. (39b)

The system (39) with two equations involves three dependent variables,φ0, φ1 andτ1, so it is
not possible to find all solutions. Special solutions will be considered. Set

φ0 = A(x, t)u2 +B(x, t)u +C(x, t). (40)

The substitution of (40) into (39a) implies thatA,B andC satisfy

2A2 − 1= 0

C − 2A(Bx +B2) = 0

Bt − Bxx − 2BBx − 4ABC = 0

Ct − Cxx − 2CBx − 2AC2 = 0.

(41)

Solutions of the system (41) are given by

(i) A = 1

2

√
2 B = C = 0

(ii) A = 1

2

√
2 B = 1

x + b2
C = 0

(iii) A = 1

2

√
2 B = 2x + b1

x2 + b1x − 6t
C = 2

√
2

x2 + b1x − 6t
.

Solutions (ii) and (iii) were not given in [6]. Solution (i) yields the stationary solution of the
unperturbed equation (31). Unfortunately, solutions (ii) and (iii) lead to the exact solution (34)
of equation (31) again. To treat (39b), we restrictτ1 = 0 andφ1 = a(x, t)u2+b(x, t)u+c(x, t).
We consider two cases corresponding toV4,3 andV4,4.

(1)

ξ0 = 1 φ0 = 1
2

√
2u2.

Substitutingφ0 andφ1 into (39b), we finda, b, andc satisfying

a = 0 c =
√

2bx − 1
2

√
2 bt − bxx = 0. (42)

Two special solutions are considered.

(A) b = 0. We deduce an approximate conditional symmetry

V3 = ∂

∂x
+ 1

2

√
2(u2 − ε) ∂

∂u
(43)
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which actually is a first-order truncated symmetry [6], so thatV3 gives exact solutions of
equation (30).
If ε > 0,

u = −√ε coth 1
2

√
2ε (x − 2

√
2εt). (44)

If ε < 0,

u = √−ε tan 1
2

√−2ε (x − 2
√−2εt). (45)

Solutions (44) and (45) do not converge to the stationary solution of equation (31), so the
stationary solution is also unstable.

(B) b = 1
2x. We find an approximate stationary solution

u = 1

k1− 1
2

√
2x

+ (k1− 1
2

√
2x)−2( 1

4k
2
1x + 3

2k1t − 1
12

√
2x3)ε. (46)

(2)

ξ0 = 1 φ0 = 1
2

√
2u2 +

u

x + b2
.

In this case, we obtain an approximate conditional symmetry

V4 = ∂

∂x
+

[√
2

2
u2 +

u

x + b2
+ ε
((

6b11t (x + b2)
−2 + 1

6(x + b2) + b11
)
u

+2
√

2b11(x + b2)
−1
)] ∂
∂u
. (47)

Forb11 = 0, the corresponding approximate conditional invariant solution is

u = (x + b2)
(− 3

2

√
2t + b21− 1

4

√
2(x + b2)

2
)−1

+ε
[

1
12(x + b2)

3
(− 3

2

√
2t + b21− 1

4

√
2(x + b2)

2
)−1

−(x + b2)
(

9
8

√
2t2 − 3

2b21t + b22− 1
96

√
2(x + b2)

4
)

×(− 3
2

√
2t + b21− 1

4

√
2(x + b2)

2
)−2]

. (48)

5. Discussion

In this paper, we extended the theory of the approximate classical symmetry method of Baikov
et al [14, 15] to include conditional symmetries and this enables us to construct approximate
conditional invariant solutions for nonlinear PDEs depending on a small parameter. In
particular, for the nonlinear wave equation and the nonlinear heat equation considered, we
constructed some approximate conditional invariant solutions. Just as the conditional invariant
solutions cannot in general be obtained by the classical method, so too those solutions except
for certain cases cannot be obtained by the approximate classical symmetry method. For
nonlinear partial differential equations with a small parameter, we introduced the notion of
a truncated symmetry. For the nonlinear heat equation (30), when it admits the truncated
symmetries of first order, we cannot obtain approximate exact solutions. The stability property
of exact solutions for unperturbed equations was also considered. As we have seen before,
the overdetermined system for approximate conditional symmetries are more complicated
than that for the ordinary conditional symmetries, so it will be of interest to develop computer
algebra programs to solve the overdetermined system for approximate conditional symmetries.
In particular, the algorithm of [24] could be useful for this purpose.
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